

GTL TECHNOLOGY UPDATE

Presented by:
Ajey Chandra
Managing Director
Muse, Stancil & Co.

February 11, 2015

Muse, Stancil & Co.

Independent energy consulting firm founded in 1984, providing industry expertise from wellhead to end-user; www.musestancil.com

Energy Sectors Served

- Natural Gas Processing
- Refining and Refined Products
- Pipelines
- Crude Oil

- Natural Gas Liquids
- Petrochemicals
- Biofuels

Representative Assignments

- Market Studies
- Asset Valuation
- Project Development
- Transactional Due Diligence
- New Technology Assessment
- Insurance Claims (Property & Business Interruption)
- Litigation Support
- Royalty Negotiation/Auditing
- Contract Negotiation/
 Dispute Resolution

GTL TECHNOLOGY UPDATE

- > Available gas "liquefaction" pathways
- **>** Why GTL?
- ➢ Gas-To-Liquids Pathways
- > Fischer Tropsch
 - R&D work ongoing worldwide to increase efficiency in reaction pathway
 - Engineering design leading to more cost effective process design
- New market entrants

GAS LIQUEFACTION PATHWAYS

- ➤ Variety of technology pathways exist for conversion of commercial natural gas to various liquid products
 - Natural Gas Liquefaction (LNG)
 - Natural Gas Conversion
 - Natural Gas to Methanol (GTM)
 - GTM integrated with Methanol to Gasoline (MTG) or other products such as dimethylether (DME)
- Comparison of Netback Prices, Basis: 2014 Averages and Henry Hub

	LNG to Europe	LNG to Asia	Methanol	GTL
Product Sales Price	\$9.69/MMBTU	\$15.78/MMBTU	\$443.35/MT	\$104.09/BBL
U.S. Dollars Per MMBTU gas processed				
Revenue	8.73	14.21	13.64	10.41
Shipping	(1.00)	(2.80)		
Tolling	(2.75)	(2.75)	(9.11)	(5.49)
Netback per MMBTU	4.98	8.66	4.53	4.92

GAS LIQUEFACTION PATHWAYS

- ➤ Variety of technology pathways exist for conversion of commercial natural gas to various liquid products
 - Natural Gas Liquefaction (LNG)
 - Natural Gas Conversion
 - Natural Gas to Methanol (GTM)
 - GTM integrated with Methanol to Gasoline (MTG) or other products such as dimethylether (DME)
- Comparison of Netback Prices, Basis: 2014 Averages and Henry Hub

_	LNG to Europe	LNG to Asia	Methanol	GTL
Product Sales Price	\$9.69/MMBTU	\$15.78/MMBTU	\$443.35/MT	\$104.09/BBL
U.S. Dollars Per MMBTU gas processed				
Revenue	8.73	14.21	13.64	10.41
Shipping	(1.00)	(2.80)		
Tolling	(2.75)	(2.75)	(9.11)	(5.49)
Netback per MMBTU	4.98	8.66	4.53	4.92

Production of GTL diesel is competitive with other liquefaction pathways; specific project economics can varying significantly

WHY GTL?

"Stranded" Gas

- Geographically isolated gas deposits
- Gas reserves with limited economic market accessibility
- Gas flaring

Diesel Markets

- Strong diesel demand world wide
- Emphasis on increasingly "cleaner" diesel fuel worldwide
- Significant change in the gasoline/diesel price relationship since 2008

WHY GTL?

"Stranded" Gas

- Geographically isolated gas deposits
- Gas reserves with limited economic market accessibility
- Gas flaring

Diesel Markets

- Strong diesel demand world wide
- Emphasis on increasingly "cleaner" diesel fuel worldwide
- Significant change in the gasoline/diesel price relationship since 2008

Small-scale, compact and mini-GTL enable project development in a wide variety of locations both onshore and offshore

WORLDWIDE GAS RESERVES

Worldwide Gas Reserves

BUT...many opportunities exist to deploy smaller-scale GTL worldwide

GTL PRODUCTS EXCEED STRINGENT QUALITY REQUIREMENTS

	GTL		CARB	
	Diesel	ULSD	Diesel	Jet
Sulfur, ppm max	<1	10	8	3000
Aromatics, max	0%	31.7%	10%	25%
Gravity, API		30+	30+	37-51
Cetane Number, min	74+	40	40	40

Note: ULSD and Jet specifications based on Colonial Pipeline 12/2011 specifications CARB Diesel specification based on Kinder Morgan Pipeline specification

GTL PRODUCTS EXCEED STRINGENT QUALITY REQUIREMENTS

GTL		CARB	CARB	
Diesel	ULSD	Diesel	Jet	
<1	10	8	3000	
0%	31.7%	10%	25%	
	30+	30+	37-51	
74+	40	40	40	
	Diesel <1 0%	Diesel ULSD <1	Diesel ULSD Diesel <1	

Note: ULSD and Jet specifications based on Colonial Pipeline 12/2011 specifications CARB Diesel specification based on Kinder Morgan Pipeline specification

GTL produces a perfectly fungible fuel and, therefore, GTL products can be supplied into almost any market

DEMAND GROWTH FOR HIGHEST QUALITY PRODUCT

- Air quality concerns have driven global diesel requirements toward very low sulfur, low aromatic product specifications
- > The U.S. demand for diesel is growing and U.S. refiners are also exporting huge volumes of higher quality diesel fuels
- > These trends are expected to continue

NATURAL GAS TO DIESEL (GTL) — WELL ESTABLISHED AND PROVEN

History

Franz Fischer
1918 – "Father" of GTL

Advances in catalyst development and process design are fueling expansion in small-scale GTL sector

Numerous Companies Developing Mini-GTL Technology

New Entrants In The Market For Mini-GTL

Company	Technology	Notes
INFRA	FT	100 BPD plant (2015)
Greyrock	FT	1000 BPD plant (2015)
Emerging Fuel Tech. (EFT)	FT	1 BPD pilot plant
Gas2	FT	3 BPD pilot
Marcellus GTL	MTG	2000 BPD (2016)
TIGAS	MTG	Demo plant in Houston
Primus GE	MTG	6.5 BPD plant in operation
TU Freiberg	MTG	15 BPD plant
Siluria	OCM	1 TPD ethylene pilot plant being constructed
Proton Ventures	Small scale Ammonia	0.2 MMcfd feed rate (3 TPD Ammonia)

POSITIVE ATTRIBUTES

- Proven chemistry
- Years of bench-scale testing, industry has "fine tuned" catalyst and commercialized catalyst manufacturing
- Scale-up of most of the process components already proven
 - Production of syngas, front end
 - Hydrocracking of wax and distillation of products, back end
- GTL-FT diesel product has been tested in many commercial applications
 - Commercial Aircraft
 - Trucking Industry
 - Military, B52 Bomber
- > Commercial plants have operated in South Africa for many years

CHALLENGES

- Capital cost for fixed-bed reactor processing configuration historically dictated larger projects to capture economies of scale; largest world-scale project completed to date far exceeded budget estimate
- Margin risk associated with uncorrelated feedstock and product price volatility
- Catalyst selectivity for wax production versus direct conversion to diesel or gasoline
- Scale-up of high efficiency, fluidized bed reactors not proven thus complicating process technology guarantees and project finance
 - Physical design, wax separation from catalyst particles
 - Heat balance, highly exothermic reaction requires active control of heat balance to avoid "hot spots"

CHALLENGE - CAPITAL COST

- > Number of companies developing modular process design
- Minimize "custom" aspects of project design
- Provide for shop fabrication to improve quality control and compress projection execution timeline
- ➤ With modular approach, smaller projects become economically feasible
- ➤ In addition, developer are seeking brownfield sites or have partnered with integrated producers to integrate smaller-scale commercial units into existing facilities

CHALLENGE – MARGIN RISK

- ➤ AGE OLD QUESTIONS What will oil and gas prices be next week? Next month? Next year? In 5 years? In 10 years?
- Commercial viability of small-scale units requires venture capital support; technical advances in reactor design are enabling such projects
- Project finance will require positive economic margin outlook in the medium to long term
- Opportunities enabled by new reactor design technologies include:
 - Offshore or floating installations
 - Focus on "portable" nature of the process
 - Remote locations where liquid takeaway infrastructure is available or can be installed at lower cost than can gas infrastructure
 - In many locations worldwide where gas flaring is being severely limited

CHALLENGE - CATALYST DEVELOPMENT

- ➤ All GTL catalysts are proprietary although most GTL companies have one or two catalyst manufactures who are licensed to produce
- Most recent leap forward is catalyst for direct conversion of natural gas to diesel, thus eliminating the wax step
 - Will likely result in reduced capital cost for less complex "back end" of the process
 - May also have implications for reactor design and ultimate reactor scale up, yet to be determined

> INFRA

- Announced investment decision on 100 BPD plant in June
- Pilot Plant launch in July
- Will test additional catalysts and plant configurations

Greyrock

- Direct-to-DieselTM Catalyst
- Modular construction of a 1,000 BPD plant
- Capacity can be increased by adding additional modules
- "Drop in" fuel which has been tested in heavy duty engines

Non-FT Processes - Gas To Chemicals and Gasoline

Primus Green Energy

- 6.5 BPD pilot plant was commissioned in 2013
- Currently in third continuous run
- Producing 93 octane gasoline

> TIGAS

Conversion to gasoline in a single synthesis loop with no need for methanol storage

Proton Ventures

- Gas2Ammmonia process

> Siluria

Conversion of methane and ethane into gasoline and ethylene

CHALLENGE - REACTOR SCALE-UP

- Process developers have been mindful of the need for measured scale-up with respect to fluidized-bed reactors
- > Some demonstration scale units have been built and operated to prove aspects of reactor engineering design
- To address the issue of clean wax separation from catalyst particles, new catalysts are being developed to eliminate the wax production and directly produce diesel; development work continues and the industry awaits commercially-available data on these new catalysts
- Other developers have focused on innovative changes in fixed bed reactor design developing modular, micro channel reactors
- Pilot plant and demonstration-scale plants employing micro-channel reactor technology have operated and larger scale commercial projects are being developed
 - Velocycs
 - Compact GTL

CONCLUSIONS

- > A wide variety of options exist for GTL projects
- Large increase in gas supply in North America has increased the attractiveness of these projects
- While LNG and large scale GTL projects continue, the newer technology is aimed at mini GTL plants that can be built with smaller gas reserves
- > The smaller units provides good economics by being modular and skid mounted, so they can be constructed in areas that provide market opportunities
- New technologies are in various stages of commercialization, and there are several very promising start-ups competing for investment funds

