GTL TECHNOLOGY UPDATE

Presented by:
Ajey Chandra
Managing Director
Muse, Stancil & Co.

February 11, 2015
MUSE, STANCIL & CO.

- Independent energy consulting firm founded in 1984, providing industry expertise from wellhead to end-user; www.musestancil.com

- Energy Sectors Served
 - Natural Gas Processing
 - Refining and Refined Products
 - Pipelines
 - Crude Oil
 - Natural Gas Liquids
 - Petrochemicals
 - Biofuels

- Representative Assignments
 - Market Studies
 - Asset Valuation
 - Project Development
 - Transactional Due Diligence
 - New Technology Assessment
 - Insurance Claims (Property & Business Interruption)
 - Litigation Support
 - Royalty Negotiation/Auditing
 - Contract Negotiation/Dispute Resolution
GTL TECHNOLOGY UPDATE

- Available gas “liquefaction” pathways

- Why GTL?

- Gas-To-Liquids Pathways

- Fischer Tropsch
 - R&D work ongoing worldwide to increase efficiency in reaction pathway
 - Engineering design leading to more cost effective process design

- New market entrants
GAS LIQUEFACTION PATHWAYS

- Variety of technology pathways exist for conversion of commercial natural gas to various liquid products
 - Natural Gas Liquefaction (LNG)
 - Natural Gas Conversion
 - Natural Gas to Methanol (GTM)
 - GTM integrated with Methanol to Gasoline (MTG) or other products such as dimethylether (DME)

- Comparison of Netback Prices, Basis: 2014 Averages and Henry Hub

<table>
<thead>
<tr>
<th>Product Sales Price</th>
<th>LNG to Europe (U.S. Dollars Per MMBTU)</th>
<th>LNG to Asia (U.S. Dollars Per MMBTU)</th>
<th>Methanol (MT)</th>
<th>GTL (BBL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>8.73</td>
<td>14.21</td>
<td>13.64</td>
<td>10.41</td>
</tr>
<tr>
<td>Shipping</td>
<td>(1.00)</td>
<td>(2.80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolling</td>
<td>(2.75)</td>
<td>(2.75)</td>
<td>(9.11)</td>
<td>(5.49)</td>
</tr>
<tr>
<td>Netback per MMBTU</td>
<td>4.98</td>
<td>8.66</td>
<td>4.53</td>
<td>4.92</td>
</tr>
</tbody>
</table>
GAS LIQUEFACTION PATHWAYS

- Variety of technology pathways exist for conversion of commercial natural gas to various liquid products
 - Natural Gas Liquefaction (LNG)
 - Natural Gas Conversion
 - Natural Gas to Methanol (GTM)
 - GTM integrated with Methanol to Gasoline (MTG) or other products such as dimethylether (DME)

- Comparison of Netback Prices, Basis: 2014 Averages and Henry Hub

<table>
<thead>
<tr>
<th>Product Sales Price</th>
<th>LNG to Europe</th>
<th>LNG to Asia</th>
<th>Methanol</th>
<th>GTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9.69/MMBTU</td>
<td>$15.78/MMBTU</td>
<td>$443.35/MT</td>
<td>$104.09/BBL</td>
<td></td>
</tr>
<tr>
<td>U.S. Dollars Per MMBTU gas processed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revenue</td>
<td>8.73</td>
<td>14.21</td>
<td>13.64</td>
<td>10.41</td>
</tr>
<tr>
<td>Shipping</td>
<td>(1.00)</td>
<td>(2.80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolling</td>
<td>(2.75)</td>
<td>(2.75)</td>
<td>(9.11)</td>
<td>(5.49)</td>
</tr>
<tr>
<td>Netback per MMBTU</td>
<td>4.98</td>
<td>8.66</td>
<td>4.53</td>
<td>4.92</td>
</tr>
</tbody>
</table>
WHY GTL?

- **“Stranded” Gas**
 - Geographically isolated gas deposits
 - Gas reserves with limited economic market accessibility
 - Gas flaring

- **Diesel Markets**
 - Strong diesel demand worldwide
 - Emphasis on increasingly “cleaner” diesel fuel worldwide
 - Significant change in the gasoline/diesel price relationship since 2008
Why GTL?

- **“Stranded” Gas**
 - Geographically isolated gas deposits
 - Gas reserves with limited economic market accessibility
 - Gas flaring

- **Diesel Markets**
 - Strong diesel demand world wide
 - Emphasis on increasingly “cleaner” diesel fuel worldwide
 - Significant change in the gasoline/diesel price relationship since 2008

Small-scale, compact and mini-GTL enable project development in a wide variety of locations both onshore and offshore
WORLDWIDE GAS RESERVES

- Large-scale GTL already in service in Qatar
- LNG projects dominate Asia & Oceania
Worldwide Gas Reserves

- Large-scale GTL already in service in Qatar
- LNG projects dominate Asia & Oceania

But...many opportunities exist to deploy smaller-scale GTL worldwide
GTL Products Exceed Stringent Quality Requirements

<table>
<thead>
<tr>
<th></th>
<th>GTL</th>
<th></th>
<th>CARB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diesel</td>
<td>ULSD</td>
<td>Diesel</td>
<td>Jet</td>
</tr>
<tr>
<td>Sulfur, ppm max</td>
<td><1</td>
<td>10</td>
<td>8</td>
<td>3000</td>
</tr>
<tr>
<td>Aromatics, max</td>
<td>0%</td>
<td>31.7%</td>
<td>10%</td>
<td>25%</td>
</tr>
<tr>
<td>Gravity, API</td>
<td>30+</td>
<td>30+</td>
<td>37-51</td>
<td></td>
</tr>
<tr>
<td>Cetane Number, min</td>
<td>74+</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Note: ULSD and Jet specifications based on Colonial Pipeline 12/2011 specifications. CARB Diesel specification based on Kinder Morgan Pipeline specification.
GTL PRODUCTS EXCEED STRINGENT QUALITY REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th>GTL Diesel</th>
<th>ULSD</th>
<th>GTL Diesel</th>
<th>CARB Diesel</th>
<th>CARB Jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur, ppm max</td>
<td><1</td>
<td>10</td>
<td>8</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Aromatics, max</td>
<td>0%</td>
<td>31.7%</td>
<td>10%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Gravity, API</td>
<td>30+</td>
<td>30+</td>
<td>30+</td>
<td>37-51</td>
<td></td>
</tr>
<tr>
<td>Cetane Number, min</td>
<td>74+</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Note: ULSD and Jet specifications based on Colonial Pipeline 12/2011 specifications
CARB Diesel specification based on Kinder Morgan Pipeline specification

GTL produces a perfectly fungible fuel and, therefore, GTL products can be supplied into almost any market
DEMAND GROWTH FOR HIGHEST QUALITY PRODUCT

- Air quality concerns have driven global diesel requirements toward very low sulfur, low aromatic product specifications.
- The U.S. demand for diesel is growing and U.S. refiners are also exporting huge volumes of higher quality diesel fuels.
- These trends are expected to continue.

U.S. Distillate Demand

- Note: Data for 2014 is January-November.
- Source: Energy Information Administration

U.S. Diesel Product Quality

- Source: Energy Information Administration
NATURAL GAS TO DIESEL (GTL) – WELL ESTABLISHED AND PROVEN

History

Franz Fischer
1918 – “Father” of GTL

Visit www.fischer-tropsch.org for complete history of GTL

Advances in catalyst development and process design are fueling expansion in small-scale GTL sector
NUMEROUS COMPANIES DEVELOPING MINI-GTL TECHNOLOGY
NEW ENTRANTS IN THE MARKET FOR MINI-GTL

<table>
<thead>
<tr>
<th>Company</th>
<th>Technology</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFRA</td>
<td>FT</td>
<td>100 BPD plant (2015)</td>
</tr>
<tr>
<td>Greyrock</td>
<td>FT</td>
<td>1000 BPD plant (2015)</td>
</tr>
<tr>
<td>Emerging Fuel Tech. (EFT)</td>
<td>FT</td>
<td>1 BPD pilot plant</td>
</tr>
<tr>
<td>Gas2</td>
<td>FT</td>
<td>3 BPD pilot</td>
</tr>
<tr>
<td>Marcellus GTL</td>
<td>MTG</td>
<td>2000 BPD (2016)</td>
</tr>
<tr>
<td>TIGAS</td>
<td>MTG</td>
<td>Demo plant in Houston</td>
</tr>
<tr>
<td>Primus GE</td>
<td>MTG</td>
<td>6.5 BPD plant in operation</td>
</tr>
<tr>
<td>TU Freiberg</td>
<td>MTG</td>
<td>15 BPD plant</td>
</tr>
<tr>
<td>Siluria</td>
<td>OCM</td>
<td>1 TPD ethylene pilot plant being constructed</td>
</tr>
<tr>
<td>Proton Ventures</td>
<td>Small scale Ammonia</td>
<td>0.2 MMcfid feed rate (3 TPD Ammonia)</td>
</tr>
</tbody>
</table>
POSITIVE ATTRIBUTES

- Proven chemistry

- Years of bench-scale testing, industry has “fine tuned” catalyst and commercialized catalyst manufacturing

- Scale-up of most of the process components already proven
 - Production of syngas, front end
 - Hydrocracking of wax and distillation of products, back end

- GTL-FT diesel product has been tested in many commercial applications
 - Commercial Aircraft
 - Trucking Industry
 - Military, B52 Bomber

- Commercial plants have operated in South Africa for many years
CHALLENGES

- Capital cost for fixed-bed reactor processing configuration historically dictated larger projects to capture economies of scale; largest world-scale project completed to date far exceeded budget estimate

- Margin risk associated with uncorrelated feedstock and product price volatility

- Catalyst selectivity for wax production versus direct conversion to diesel or gasoline

- Scale-up of high efficiency, fluidized bed reactors not proven thus complicating process technology guarantees and project finance
 - Physical design, wax separation from catalyst particles
 - Heat balance, highly exothermic reaction requires active control of heat balance to avoid “hot spots”
CHALLENGE – CAPITAL COST

- Number of companies developing modular process design
- Minimize “custom” aspects of project design
- Provide for shop fabrication to improve quality control and compress projection execution timeline
- With modular approach, smaller projects become economically feasible
- In addition, developer are seeking brownfield sites or have partnered with integrated producers to integrate smaller-scale commercial units into existing facilities
CHALLENGE — MARGIN RISK

- AGE OLD QUESTIONS – What will oil and gas prices be next week? Next month? Next year? In 5 years? In 10 years?

- Commercial viability of small-scale units requires venture capital support; technical advances in reactor design are enabling such projects

- Project finance will require positive economic margin outlook in the medium to long term

- **Opportunities enabled by new reactor design technologies include:**
 - Offshore or floating installations
 - Focus on “portable” nature of the process
 - Remote locations where liquid takeaway infrastructure is available or can be installed at lower cost than can gas infrastructure
 - In many locations worldwide where gas flaring is being severely limited
CHALLENGE — CATALYST DEVELOPMENT

- All GTL catalysts are proprietary although most GTL companies have one or two catalyst manufacturers who are licensed to produce

- Most recent leap forward is catalyst for direct conversion of natural gas to diesel, thus eliminating the wax step
 - Will likely result in reduced capital cost for less complex “back end” of the process
 - May also have implications for reactor design and ultimate reactor scale up, yet to be determined

- INFRA
 - Announced investment decision on 100 BPD plant in June
 - Pilot Plant launch in July
 - Will test additional catalysts and plant configurations

- Greyrock
 - Direct-to-Diesel™ Catalyst
 - Modular construction of a 1,000 BPD plant
 - Capacity can be increased by adding additional modules
 - “Drop in” fuel which has been tested in heavy duty engines
NON-FT PROCESSES - GAS TO CHEMICALS AND GASOLINE

- **Primus Green Energy**
 - 6.5 BPD pilot plant was commissioned in 2013
 - Currently in third continuous run
 - Producing 93 octane gasoline

- **TIGAS**
 - Conversion to gasoline in a single synthesis loop with no need for methanol storage

- **Proton Ventures**
 - Gas2Ammonia process

- **Siluria**
 - Conversion of methane and ethane into gasoline and ethylene
CHALLENGE — REACTOR SCALE-UP

- Process developers have been mindful of the need for measured scale-up with respect to fluidized-bed reactors.

- Some demonstration scale units have been built and operated to prove aspects of reactor engineering design.

- To address the issue of clean wax separation from catalyst particles, new catalysts are being developed to eliminate the wax production and directly produce diesel; development work continues and the industry awaits commercially-available data on these new catalysts.

- Other developers have focused on innovative changes in fixed bed reactor design developing modular, micro channel reactors.

- Pilot plant and demonstration-scale plants employing micro-channel reactor technology have operated and larger scale commercial projects are being developed:
 - Velocycs
 - Compact GTL
CONCLUSIONS

- A wide variety of options exist for GTL projects

- Large increase in gas supply in North America has increased the attractiveness of these projects

- While LNG and large scale GTL projects continue, the newer technology is aimed at mini GTL plants that can be built with smaller gas reserves

- The smaller units provides good economics by being modular and skid mounted, so they can be constructed in areas that provide market opportunities

- New technologies are in various stages of commercialization, and there are several very promising start-ups competing for investment funds